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Abstract—Transient, laminar free convection along a vertical, isothermal flat plate arising from buoyancy
forces created by both temperature and concentration gradients is investigated. All fluid properties,
except for the temperature and concentration dependent body forces, are assumed to be constants in
the analysis. Non-dimensionalization of the governing boundary layer equations results in the following
parameters: (1) N, the buoyancy ratio parameter, (2) Pr, the Prandt! number, and (3) Sc, the Schmidt
number. The coupled nonlinear partial differential equations are solved numerically using an explicit
finite difference procedure. Results are obtained for Pr=1 and a realistic range of Sc and positive N.
Representative transient and steady state velocity, temperature, and concentration profiles are presented,
along with transient mean Nusselt and Sherwood numbers. For short times, heat transfer is by con-
duction only and mass transfer is by diffusion only. Following this initial period, the body forces
generate motion in the fluid and both convective heat and mass transfer become important. The transient
velocity, temperature, and concentration profiles all reach maximum values before decreasing slightly to
their respective steady state values. Owing to this overshoot phenomenon in the temperature and
concentration profiles, a temporal minimum is observed in both the Nusselt and Sherwood numbers.
For mass transfer aiding the flow, the results show that the Nusselt and Sherwood numbers are higher
than those for pure thermal convection.

NOMENCLATURE T, temperature;

e, concentration; u, x-velocity component;
C, dimensionless concentration, U, dimensionless x-velocity component,

(e )f(ew—ca; L
¢p,  constant pressure specific heat; y ko
D, dlﬂuswn'coeﬁiment; ' b, y-velocity component;
g, acceleration due to gravity; V,  dimensionless y-velocity component,
Gry, thermal Grashof number, fgL)(T,,— T..)/v*; oL
Grt, mass Grashof number, f*gLc, —c,)/v?; —Gri ¥
A, local heat-transfer coefficient, Vo .

—k(@T/0y)W/(T— T,); X, spatial coordinate along the plate:
hp, local mass-transfer coefficient, X, dimensionless spatial coordinate along the

—D(@c/Oy)wl(cw—c); plate, x/L:

L rr v, spatial coordinate normal to the plate;
E, average heat-transfer coefficient, fj hdx: Y, dimensionless spatial coordinate normal to
{ % the plate, }f Gri.
hyp,  average mass-transfer coefficient, 7 J hpdx;
0

k, thermal conductivity; Greek symbols
L, length of the fiat plate; o, thermal diffusivity, k/pc,, ;
N,  buoyancy ratio parameter, B, volumetric coefficient of thermal expansion;

B¥ew—c )BT, - T,.); B*,  volumetric coefficient of expansion with
Nu,, local Nusselt number, hx/k; concentration;
Nug, average Nusselt number, AL/k; é, momentum boundary-layer thickness;
Pr, Prandtl number, v/u; dp,  concentration boundary-layer thickness;
Se,  Schmidt number, v/D; o, thermal boundary-layer thickness;
Sh,, local Sherwood number, hpx/D; Az,  dimensionless time-step;
Shy, average Sherwood number, fi, L/D; AX, dimensionless finite difference grid spacing
¢ time; in the X-direction;
*Present Address: RE/SPEC Inc., P.O. Box 725, Rapid AY, fimenSIOnl.e s ﬁnlte difference grid spacing

City, SD 57701, USA. in the Y-direction;

+Present Address: Heat Transfer Research, Inc., 1000 0, dimensionless temperature,

South Fremont Avenue, Alhambra, CA 91802, US.A,
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1 Viscosity;
v, kinematic viscosity, u/p;
. . , v
T, dimensionless time, — Grzx :
L
0, density.
Subscripts
w, at the surface of the plate;
X, based on the distance from the leading edge
of the plate:
o, free stream conditions.
INTRODUCTION

EVER since the pioneering effort by Lorenz [ 1] in 1881,
the analysis of free or natural convection has been of
considerable interest to engineers and scientists. Most
studies in this field have been concerned solely with
thermal convection; however, as Gebhart and Pera [2]
have pointed out, buoyancy effects resulting from con-
centration gradients in multicomponent mixtures can
be just as important in generating fluid motion as can
temperature gradients.

Representative fields of interest in which combined
heat and mass transfer—under conditions of free
convection—are important include: design of chemical
processing equipment, formation and dispersion of fog,
distributions of temperature and moisture over agri-
cultural fields and groves of fruit trees, damage of
crops due to freezing, and pollution of the environment.

The problem of thermal convection, a situation in
which the buoyancy forces are generated only by tem-
perature gradients, in external flows has been the
subject of a large number of investigations [3-5]. It is
only quite recently, however, that the problem of free
convection which takes into account the buoyancy
effects due to mass diffusion has been studied. Of par-
ticular interest here are those investigations dealing
with external vertical flows.

Gebhart and Pera [2] obtained similarity solutions
for steady, laminar flows adjacent to vertical surfaces
and in plumes. Solutions were obtained for air and
water for various values of the Schmidt number and
for multiple buoyancy effects which both aided and
opposed the flow. They have included an excellent
literature review in their paper which covers virtually
all of the work done in this area. More recently,
Bottemanne [6] has considered steady state simul-
taneous heat and mass transfer along a vertical flat
plate. Solutions to the boundary-layer equations were
obtained only for Pr = 0-71 and S¢ = 0-63.

The present investigation, involving the simultaneous
effects of heat and mass transfer, is concerned with a
numerical study of transient laminar free convection
along an isothermal vertical plate which is subjected
to a step-change in temperature and concentration. Of
particular interest in this study is the effect of the
buoyancy forces due to mass transfer on the transient
velocity profiles, temperature profiles, Nusselt num-
bers, and Sherwood numbers.

ANALYSIS

Consider transient, laminar flow with simultaneous
heat and mass transfer along an isothermal vertical
flat plate. The fotlowing assumptions are made:

1. The fluid properties are assumed to be constants
except for the body force terms in the momentum
equation which are approximated by the
Boussinesq relations.

2. The concentration ¢ of the diffusing species in the
binary mixture is very small in comparison to the
other chemical species which is present.

3. Viscous dissipation in the energy equation is
negligible.

4. No chemical reactions are taking place in the flow.

5. The temperature of the plate is subjected to a
step change from T, to T, at time ¢ = 0. Simul-
taneously the surface concentration is changed
from a value of ¢, to ¢,,.

6. The boundary-layer equations for mass, momen-
tum, energy, and species are applicable.

Based on these assumptions the continuity, momen-

tum, energy and species equations become

cu Cv
X fy
ou  Ou ﬂu Pu
U+ ~“+/fg (T—T,)+pB*g(c—cy) (2)
at ox %
cT ‘T oT &*T
P e o e (3)
it Ox oy Y
‘e éc e e
——tu-——+v—-—=D-—— 4)
ct éx ay oy

where the x-coordinate is directed upward along the
plate and the y-coordinate outward from the plate. The
corresponding initial and boundary conditions are:

u(x,3,00=0
u(x,0,t)= 10
w0, 1, 1)=0
u(x, V,r)m
r{x, 3. 0) =
v(x,0,1) = 0
T(x,»,00=T,
T(x,0,1)=T, (3)
(0 wi)y=T,
x, %, ) =T,
(v\. »o=c,
c(x,0,1) = ¢,
A0, v. 1) = ¢,

X, o, t) = ¢

Equations (1)—(5) may be expressed in dimensionless

form as
U +FV _o )
ox ey
o U oU  ffU
—+U—+V_——=——+0+NC 7
01 0X Yy éyv? @

[’0+ U co LV oo 1 o0 ®)
it .4 &Y Proy?
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oC oC oC 1 0%C
s PV ax vV oy = scav? ©)
U(X, Y,0)= 0
UX,0,7)=
U@©, Y 1=0
UX,xc,1)=0
VX, Y 0)=
V(X,0,7)=
(X, Y,0)= 0
0(X,0,r)=
00,Y, )=
B(X,00,1) =
C(X, Y,0)
C(X,0,7)=
cO,Y 1=
C(X,»,1)=0.

The dimensionless quantities are defined in the
Nomenclature.

Equations (6)-(10) show that the dependent variables
U, V, 6 and C are functions of the dimensionless spatial
coordinates X and Y, dimensionless time t, and the
dimensionless parameters N, Pr and Sc. In view of the
definition of the two Grashof numbers, the parameter N
may be defined as

B*(Cw - Cao)

"~ B(T,—T,)

It is noted that N is equal to zero when there is no
mass diffusion body force and becomes infinite when
there is no thermal diffusion. Equation (7) indicates
that when N < 0, the mass diffusion buoyancy forces
oppose those of thermal diffusion, when N =0 the
buoyancy effects are purely thermal, and when N > 0
the mass diffusion buoyancy forces aid those of thermal
diffusion.

In the case of pure forced convection the Prandtl
number, defined as v/a, relates the relative thicknesses
of the momentum and thermal boundary layers, § and
;. Similarly, for pure forced convective mass transfer
the Schmidt number, defined as v/D, relates the momen-
tum and concentration boundary-layer thicknesses, ¢
and Jp,. However, in the case of free convection in the
presence of a mass diffusion contribution to the
buoyancy force, the relationship among 4, 4, and Jp
becomes extremely complex and depends on the ratio
Pr/Sc as well as the buoyancy ratio parameter N.

It is customary to express heat- and mass-transfer
characteristics in terms of the flux rate divided by the
temperature or concentration difference causing the
transfer. This ratio defines the heat- and mass-transfer
coefficients h and hy, respectively. For a uniform tem-
perature or concentration difference over the plate, the
flux is generally a variable. Therefore, local values, hand
hp, as well as average values, 1 and hp, are generally
of interest. These values are then expressed in dimen-
sionless form to obtain the local and average Nusselt
and Sherwood numbers, respectively. In this analysis
these groups, in terms of dimensionless variables, are:

(10)

0
0
1
0

(11)

a0
Nu, = — (ﬁy) xert (12)

Sh, = (13)

“\oy ),

_ 30

Nu; = —Gr*J ( ) dx
L L o 0Y "

_ oC
Sh, = —Gri L (aY,)de

Of primary interest in this study are the effects of
the mass-transfer contribution to the buoyancy force.
Thus, except for a comparison with some previously
published results for Pr = 7-0, the Prandt! number was
set equal to a fixed value of one throughout this
investigation. Results were obtained for Schmidt num-
bers of 02, 0-7, 1-0 and 7-0 and for values of the
parameter N of 0-0, 1-0 and 2-0.

(14)

(15)

Solutions for short times

During the initial period following the step changes
in the wall temperature and wall concentration, the
body forces have not had sufficient time to generate

~ any appreciable motion in the fluid. Hence, the velocity

components U and V are both negligible for small 7.
During this initial transient regime, the heat- and mass-
transfer processes are dominated by pure heat conduc-
tion and pure mass diffusion, respectively, and equations
(8) and (9) reduce to

60~ 1 &% (16)
ot Proy?
oC 1 8 C
—_— =, 17
ot ScéY? (n

Thus, for short times it is noted that for a given Prandtl
number, the temperature profile is a function only of
time and the normal distance from the wall. Similarly,
the concentration profile is a function only of time and
the normal distance from the plate for a fixed Schmidt
number. Setting Pr = 1, the solutions of equations (16)
and (17), subject to the initial and boundary conditions
given in equation (10), are [7]

-
catf1(2]

where erfc is the complimentary error function. Using
the definitions of the Nusselt and Sherwood numbers,
a straightforward manipulation of equations (18) and
(19) leads to the following analytical expressions for
the initial transient period

Nu, /Grt = (1/z0)
Shy/Gr} = (Sc/nn)t.

(18)

(19)

(20)
@y

FINITE DIFFERENCE SOLUTION

Solutions to the coupled continuity, momentum,
energy and species equations—equations (6)—(9)—sub-
ject to the initial and boundary conditions —equation
(10)—were obtained using a numerical procedure.
Starting from the specified initial conditions at time
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1 =10, the velocity, temperature and concentration
fields were obtained at time 7+ At by using explicit
finite difference approximations to the governing equa-
tions and boundary conditions.

Successive application of these finite difference ex-
pressions then yielded the transient velocity, tempera-
ture and concentration profiles and eventually steady-
state conditions were approached —provided that stab-
ility requirements were satisfied. Following the method
prescribed by Carnahan e al. [8] it can be shown,
for Pr = 1, that the stability criterion in this case must
satisfy the inequality

wed[La L2
TN{AX AY Sc(AY)

at all discrete points in the flow field. Since both U

and V vary throughout the flow, it is apparent that

the critical time-step - - consistent with equation (22)-

is actually a variable.

In order to obtain adequate convergence, it was
found necessary to take very small values of AY near
the surface and very small values of AX near the leading
edge of the plate. Thus, in order to keep the computing
time requirements within reasonable limits, variable
mesh sizes were employed in both the X- and Y-
directions. All results presented in the following section
were obtained using the following mesh sizes:

AX = 00200 < X < 0-10)
AX = 0:06(0-10 < X < 0-40)
AX = 010040 < X < 1-00)
AY = 0100 < ¥ < 2:00)

AY = 0:50(2:00 < Y < 12:0).

In order to obtain a numerical solution it was necessary
to limit the problem to a finite, rather than an infinite,
extent in the Y-direction. Thus, after some preliminary
investigations, a maximum value of Y =120 was
chosen for computational purposes. In order to check
convergence of the finite difference solutions, the spatial
mesh sizes were doubled—accompanied by an appro-
priate change in At---and results for the two solutions
were compared. The maximum difference in any of the
dependent variables was observed to be seven per cent
which was considered to be an acceptable degree of
convergence.

Once the temperature and concentration profiles are
known at any given time, the local and mean Nusselt
and Sherwood numbers may be evaluated. The local
heat and mass transfer coefficients were obtained using
5-point approximations for the derivatives (06/0Y),,
and (6C/@Y),,. Integrals in equations (14) and (15) were
evaluated using Simpson’s rule in order to obtain values
for Nu; and Sh; .

Steady state conditions are approached asymp-
totically; however, the rates of heat and mass transfer
are fairly sensitive indicators of the approaching steady
state conditions. In this investigation steady state con-
ditions were assumed to exist when the change, per
time-step, in the local Nusselt number or local
Sherwood number at X = 1-0 was less than 0-04 per
cent.

A more detailed analysis of the numerical procedure,
along with a complete listing of the FORTRAN com-
puter program, which was written for a CDC 3400
digital computer. may be found in [9].

RESULTS
Limiting checks

In order to assess the accuracy of the numerical
procedure, several solutions which are limiting cases of
the present study were compared with previously
published values.

For N = 0 the only contribution to the body force
is due to thermal diffusion and the results are directly
comparable with those of Ostrach [10]. Good agree-
ment was obtained with the steady-state local Nusselt
number results of Ostrach for Pr = 1. Near the leading
edge of the plate (X < 0-1) the maximum difference
was about 6-5 per cent, while at X = 1-0 the difference
was only 0-75 per cent. Furthermore, a comparison of
mean Nusselt number results, which are of greater
interest than the local values in this study, with those
of Ostrach showed a difference of only 1-25 per cent.
Finally, a comparison of the steady-state velocity and
temperature profiles at X = 1-0, again for Pr = 1, with
those of Ostrach showed excellent agreement (well
within 1 per cent) near the plate, but with an increasing
error as the free stream conditions - U = 0and 6 = 0--
were approached.

Two transient free convection solutions, obtained in
the absence of mass-transfer effects, were compared
with corresponding values in the literature. First,
transient local Nusselt numbers for N =0, X = 1-0
and Pr=1 were compared with results from the
approximate correlation of Churchill and Usagi [11].
Although the steady-state local Nusselt number at
X = 1-0 predicted by these investigators is 0-395, which
is 1-5 per cent lower than the Ostrach value of 0-401,
reasonably good agreement was obtained over the time
interval of interest, 0 < t < 4. Second, transient mean
Nusselt numbers for N = 0 and Pr = | were compared
with the results of Kleppe and Marner [12], and
excellent agreement was noted over the entire time
range, 0 < r < 4.

As a final comparison, steady state local Nusselt and
Sherwood numbers—including the combined buoy-
ancy effects of thermal and mass diffusion —were com-
pared with the results of Gebhart and Pera [2] for
N =20 and Pr = Sc = 7-0. The largest deviation was
observed at X = 0-10 with a difference of 4-2 per cent
while excellent agreement was found at the trailing edge
of the plate with a difference of only 0-75.

Based on these comparisons, it is felt that the present
numerical procedure can predict both transient and
steady-state results quite accurately throughout most
of the flow field. The two exceptions are: (1) near the
leading edge of the plate, where very large changes are
taking place, and (2) near the outer edge of the
boundary layers, where the boundary conditions—
U = 0,0 =0and C = 0-—are being approached asymp-
totically.
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Velocity, temperature and concentration profiles

Figure 1 shows the typical development of the
transient dimensionless X-component of the velocity U
for Pr=1, Sc= 07 and N = 2:0. The profiles pre-
sented are those at the upper edge of the plate, ie. at
X = 1-0. The velocity increases steadily with time, until
at T = -8 when a maximum value is reached, and then
decreases slightly to a steady-state value at © = 4-0.
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that both the magnitude of the maximum velocity and
the time at which it occurs are functions of these three
parameters.

The effect of the parameter N on the steady state
velocity profile, again at X = 1-0, is shown in Fig. 2
for Pr=1 and Sc = 1-0. Clearly, the contribution of
mass diffusion to the buoyancy force increases the
maximum velocity significantly. A comparison of Figs.

o231 o
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y 4-00 ( Steady state)
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70 80

Y

FiG. 1. Transient velocity profiles at X = 1-0for Pr = 1-0, S¢ = 0-7, and N = 2-0.

50

60 70 80

F1G. 2. Steady state velocity profiles at X = 1-0 as a function of N for Pr = Sc¢ = 1-0.

The somewhat surprising phenomenon of a temporal
maximum in the velocity profile has been observed and
discussed by several investigators for the problem of
transient free convection on a vertical flat plate in the
absence of mass-transfer effects. Siegel [13], based on
an approximate integral analysis, was apparently the
first to predict such a behavior. Later analyses by
Gebhart [14], Hellums and Churchill [15] and Kleppe
and Marner {12] all confirmed the findings of Siegel.
In contrast to these earlier studies, however, the present
problem is considerably more complex in that N and
Sc, in addition to Pr, are now additional parameters.
The maximum velocity apparently occurs when the
buoyancy forces in the fluid are largest, and it is clear

1 and 2 shows, for fixed values of Pr and N, that a
decrease in the Schmidt number also increases the
maximum velocity. This increase in U may be at-
tributed to the fact that the rate of mass transfer in
the fluid, which in turn influences the buoyancy force,
increases as the Schmidt number decreases.

‘Figure 3 depicts the development of the transient
dimensionless temperature at X =1-0 for Pr=1,
Sc =07 and N = 20. The temperature distribution,
much as the velocity profile in Fig. 1, increases to a
maximum value at ¢ = 1-2 and then decreases slightly
to a steady state value at © = 4-0. This interesting over-
shoot phenomenon was first predicted analytically by
Siegel [13] and verified and discussed by [12, 14, 15]
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F1G. 4. Transient concentration profiles
at X =1-Ofor Pr =1-0,Sc = 0-7and 7-0,
and N = 2:0.

for the problem of transient free convection without
mass transfer on a vertical flat plate. Experimental data
obtained by Goldstein and Eckert [16] and Klei (as
reported by Siegel [13]) for a vertical flat plate sub-
jected to a step-change in heat flux also verified this
phenomenon. Just as in the case of the velocity profile,
the parameters N, Sc and Pr influence the extent of the
overshoot in the temperature and the time at which the
maximum profile occurs.
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Fi1G. 5. Transient concentration and
temperature profiles at X =1-0 for
Pr=10,Sc=07and N = 1-0.
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FiG. 6. Transient concentration and
temperature profiles at X = 1-0 for
Pr=10,8c=70and N = 1-0.

Figure 4 relates the transient concentration profiles
at X =1-0for Pr=1,8c= 07 and 7-0, and N = 2-0.
Since the rate of mass transfer in the fluid increases
with decreasing Schmidt number, the concentration
boundary layer is considerably thinner for S¢= 70
than for Sc¢ = 0-7. For a Schmidt number of 0-7, C in-
creases steadily until a maximum is reached at 7 = 1-20,
and then decreases to a steady-state value at 7 = 4-0.
For Sc = 7-0 the concentration profile reaches a maxi-
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mum at t = 220 and then is observed to decrease to
a steady-state value at 7 = 4-0. Thus, the overshoot
previously observed in the velocity and temperature
profiles is also noted here in the concentration profile.
Although the maximum concentration for Sc¢ =07
occurs considerably sooner than for Sc= 7-0, at
7= 1-20 as compared to 1 = 2-20, the time at which
the concentration profiles reach their respective steady-
state values is about the same. It should also be noted,
for these values of the parameters, that the overshoot
for Sc =07 is slightly more pronounced than for
Sc=170.
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also clearly apparent in Figs. 5 and 6 for N = 1-0.
Although the extent of the overshoot in both C and 6
is larger for S¢ = 0-7 than for 7-0, the difference in C
is clearly noticeable, while for the temperature profiles
the difference is very slight.

In comparing Figs. 5 and 6, it should be noted that
a change in the Schmidt number changes the concen-
tration profile and also alters the corresponding tem-
perature profile. This behavior reflects the coupling of
the species and energy equations to the momentum
equation through the temperature and concentration
dependent body forces. Thus, as the body force par-

T T 1 T T T T T 1 1T T T T 1 1 T T T
Mean Nusselt number
Mean Sherwood number ————-—
N=2-0
e / N=00]
A\
2 / A ]
~N
1§ i
g - -
5 / ]
~ 1 N~ _ J/J
N A
N R .
o Pure /nvmoss diffusion 4
1 L ) WOV I I [ I | N R I | L. . ) I S L l A 1
0 10 20 30 40
T
FIG. 7. The effect of N on the transient mean Nusselt and Sherwood
numbers for Pr = 1-0 and Sc¢ = 0-2.
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F1G. 8. The effect of N on the transient mean Nusselt and Sherwood
numbers for Pr = 1-0 and Sc = 0-7.

A comparison of transient temperature and concen-
tration profiles for Pr = 1, N = 1-0and Sc = 0-7 and 7-0
is presented in Figs. 5 and 6. Note that the concen-
tration boundary layer in Fig. 5 is thicker than the
thermal boundary layer (Pr=1,Sc = 0-7), while in
Fig. 6 the thermal boundary layer is considerably
thicker than the concentration boundary layer (Pr = 1,
Sc = 7-0). Thus, the effect of a reduced rate of mass
diffusion in the fluid as the Schmidt number increases
is very apparent. It should also be noted that the
overshoot in the temperature and concentration pro-
files previously observed in Figs. 3 and 4 for N = 2:0 is

ameter N increases, it would be expected that a corre-
sponding influence would be observed in the velocity,
temperature and concentration profiles.

Nusselt and Sherwood numbers

Transient mean Nusselt and Sherwood numbers are
shown in Figs. 7-10 for Sc¢ =02, 07, 1-0 and 70,
respectively. In each case Pr=1 and N = (-0 and 2:0.
At small times the parameter N has negligible influence
on both Nu, /Gr} and Shy /Grf due to the fact that heat
is transferred by conduction only and mass is trans-
ferred by diffusion only during this regime. Analytical
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expressions for the Nusselt number and the Sherwood
number during this initial regime are presented in
equations (20) and (21), respectively, and are shown
graphically in Figs. 7-10 for comparison. As the buoy-
ancy forces due to mass transfer and thermal convec-
tion increase, the velocity increases sufficiently for N
to become a parameter. Owing to the fact that the
temperature and concentration profiles reach a maxi-
mum before steady-state conditions are reached, a
transient minimum is observed in both the Nusselt
number and the Sherwood number. The difference

G. D.CacravaN and W, J. MARNER

parameter N. In Fig. 9 it should be pointed out that
when Pr =S¢ = 1-0, the temperature and concen-
tration profiles are identical and hence the curves for
the Nusselt and Sherwood numbers coincide.

As the Schmidt number increases from a value of
0-2 to a value of 7-0, a definite trend is apparent. With
the Prandtl number fixed at a value of one, an increase
in the Schmidt number is observed to (1) increase the
Sherwood number substantially, and (2) decrease the
Nusselt number moderately. Furthermore, the effect of
the parameter N on the Nusselt number is noted to
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- . N=00
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F16. 9. The effect of N on the transient mean Nusselt and Sherwood

numbers for Pr = -0 and Sc = 1-0.
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F16. 10. The effect of N on the transient mean Nusselt and Sherwood
numbers for Pr = 1-0 and Sc = 7-0.

between the temporal minimum and the steady-state
value, however, is quite small and, in some cases, is
nearly imperceptible on the figures. When N does
become a parameter, it is noted that an increase in N
results in higher Nusselt and Sherwood numbers. In
other words, the effect of increasing the buoyancy force
due to mass transfer is an increase in the rates of heat
and mass transfer. In Figs. 7-10 both Nuy/Gri and
Sk /Gr} show a slight dependence on the time required
to reach steady state conditions, ie. as Sc increases
the time increases. However, the time required to reach
steady-state conditions is virtually insensitive to the
become less pronounced with increasing Schmidt num-

ber. As Sc increases the difference between the Nusselt
numberat N = 2:0and N = (-0 becomes smaller. How-
ever, just the opposite effect is observed in the case of
the Sherwood number. The following explanation
attempts to account for this behavior. In Fig. 4 it was
observed that an increase in the Schmidt number tends
to decrease the concentration boundary-layer thick-
ness. However, even though the conservation equations
are coupled, the thermal boundary-layer thickness is
not highly sensitive to increases in the Schmidt number
for a fixed value of the Prandtl number. Thus, as the
Schmidt number increases the concentration boundary-
layer thickness becomes smaller than the thermal
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boundary-layer thickness. Consequently, buoyancy
effects due to mass transfer are diminished in the
thermal boundary layer, and hence the influence of the
parameter N on Nu,/Gri diminishes with increasing
Schmidt number. On the other hand, as the Schmidt
number increases, the buoyancy effects due to thermal
convection become less important in comparison to
those due to mass transfer in the thinner concentration
boundary layer. Hence, as the Schmidt number in-
creases, the influence of N on Sh;/Gri also increases.

CONCLUSIONS

The problem of transient laminar free convection
along a vertical, isothermal flat plate arising from
buoyancy forces created by both temperature and con-
centration gradients has been analyzed. Briefly, the
most important results and conclusions may be sum-
marized as follows:

1. For constant properties, except in the temperature
and concentration dependent body force terms,
the parameters of the problem are: Pr, the Prandtl
number; Sc, the Schmidt number; and N, the
buoyancy ratio parameter.

2. For short times the heat transfer is by conduction
only, the mass transfer is by diffusion only, and
both phenomena may be predicted with closed
form analytical solutions.

3. Following the initial conduction—diffusion regime,
motion in the fluid is generated by the two body
forces. In order to obtain a solution to this prob-
lem, the governing conservation equations, which
are coupled, must be solved numerically.

4. The transient velocity, temperature and concen-
tration profiles all reach maximum values before
decreasing slightly to their respective steady state
values.

5. Owing to the transient overshoot in the tempera-
ture and concentration profiles, both the Nusseit
and Sherwood numbers pass through a temporal
minimum before reaching their steady state values.

6. For mass diffusion aiding the flow (N > 0), both
Nu, and Shy, are higher than the values for pure
thermal convection.
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CONVECTION LIBRE TRANSITOIRE AVEC TRANSFERT MASSIQUE
SUR UNE PLAQUE PLANE VERTICALE ET ISOTHERME

Reésumé—On étudie la convection libre laminaire transitoire résultant des forces de gravité créées par
les gradients de température et de concentration sur une plaque plane verticale isotherme. Toutes les
propriétés du fluide sont supposées constantes, excepté les forces de volume dépendant de la température
et de la concentration. Les équations fondamentales de la couche limite rendues adimensionnelles
conduisent aux paramétres suivants: (1) N, paramétre des effets de gravité, (2) Pr, nombre de Prandti,
et (3) Sc, nombre de Schmidt. Les équations aux dérivées partielles non linéaires couplées sont résolues
numériquement A I'aide d’une procédure explicite de différences finies. Les résultats sont obtenus pour
Pr = 1 et dans un domaine réaliste de Sc et N positif. On présente les profils de vitesses, températures et
concentrations dans la période transitoire et a I'état permanent, ainsi que les nombres de Nusselt et de
Sherwood locaux & I’état permanent. Pour des temps courts, le transfert de chaleur se fait par conduction
uniquement et le transfert de masse par diffusion uniquement. Aprés cette période initiale, les forces de
volume engendrent le mouvement du fluide et les transferts de chaleur et de masse par convection
deviennent tous deux importants. Les profils de vitesses, températures et concentrations atteignent tous
une valeur maximale avant de décroitre 1égérement jusqu’a leurs valeurs respectives a I'état stationnaire.
Ce phénoméne de dépassement dans les profils de température et de concentration a pour conséquence
un minimum dans le temps des nombre de Nusselt et de Sherwood. Lorsque le transfert de masse s’ajoute
a 'écoulement, les résultats montrent que les nombres de Nusselt et de Sherwood sont supérieurs a ceux
obtenus en convection thermique pure.
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INSTATIONARE FREIE KONVEKTION MIT STOFFUBERGANG
AN EINER ISOTHERMEN, SENKRECHTEN, EBENEN PLATTE

Zusammenfassung — Die Untersuchung gilt der von Temperatur- und Konzentrationsgradienten erzeugten
instationdren, laminaren, freien Konvektion an einer senkrechten, isothermen, ebenen Platte. In der
Analyse sind alle Eigenschaften des Fluids mit Ausnahme der Temperatur und der Konzentration als
konstant angenommen. Aus den charakteristischen Grenzschichtgleichungen ergaben sich folgende
Parameter: (1) N, das Auftriebsverhiltnis, (2) Pr, die Prandtl-Zahl und (3) Sc, die Schmidt-Zahl.

Die gekoppelten, nicht-linearen, partiellen Differentialgleichungen werden numerisch gelost mit einer
Methode der finiten Elemente. Ergebnisse sind wiedergegeben fiir Pr = 1 und einen realistischen Bereich
von Sc und positivem N. Zusammen mit lokalen Nusselt- und Sherwood-Zahlen fiir den stationiren
Bereich werden instationire und stationidre Geschwindigkeiten, Temperaturen und Konzentrationsprofile
angegeben. Fiir kurze Zeiten erfolgt der Wirmeiibergang nur durch Leitung und der Massentransport
nur durch Diffusion. AnschlieBend an diese Anlaufperiode erzeugen die Massenkrifte eine Bewegung
im Fluid, und konvektiver Warme- und Stoffiibergang werden bedeutsam. Die instationdren Geschwindig-
keits-, Temperatur- und Konzentrationsprofile erreichen alle einen Maximalwert, che sie auf thre
entsprechenden stationiren Werte allmiihlich absinken. Aufgrund dieses Uberlaufphinomens der
Temperatur- und der Konzentrationsprofile erreichen sowohl die Nusselt— wie auch die Sherwood-Zahl
ein kurzzeitiges Minimum. Fur den Fall, dafi der Stoffiilbergang die Strémung unterstiitzt, liefern die

Ergebnisse hohere Nusselt - und Sherwood-Zahlen als fiir den Fall rein thermischer Konvektion.

HECTALUMOHAPHASsI CBOBOJHASI KOHBEKLMA TP HAJIMYUU
MACCOOBMEHA HA M30TEPMHUYECKOWM BEPTUKAJIBHOU
MAOCKOU TIJTACTUHE

AnHotamus — B paboTe paccMaTpMBaeTCs HECTAUMOHApPHAS NaMMHapHas CBOOOAHAM KOHBEKLHUS
BJIO/Ib BEPTHKAIBHONH M30TEPMHUYECKON MAOCKOH IMIACTHUHB! 3a CHET NOOBEMHbBIX CHJI, CO31aBaeMbix
rpagueHTaMu TeMIIEpaTypbl U KOHUEHTPALMH.

MMpeanonaraercs, YTo BCe CBOMUCTBA XUIAKOCTH, 3d MCKIFOYECHHEM MACCOBLIX CHJI, 3aBUCALLUX OT
TeMriepaTyphbl M KOHUEHTPALUHM, TIOCTOsAHHbI. [IpuBenenye ypaBHeHrii norpanuyHoro cios k 6espas-
MEPHOMY BHAy AaeT cneaylove napameTpel: (1) N, napamerp COOTHOLWEHHA MOABEMHbIX CHIT;
(2) Pr, uncno Tlpannras u (3) Se, yucno Wmuara. Cucrema HenuHeRHBIX AMGdepeHUUanbHbIX
ypaBHEHHH B YaCTHBIX MPOU3IBOAHBIX PELIAETCSA YHCIEHHO € MOMOLLbIO SIBHOH KOHEYHO-PA3HOCTHOM
cxeMbl. Pe3ynbTaTbl modydcHsl mas Pro |, peajbHOro auana3oHa Sc M MOJOXHTENbHOro N.
MpeacTaBrieHbl XapakTepHble TPOHUITH HECTALHMOHAPHOH U CTALMOHAPHON CKOPOCTH, TEMNEPATYPhI
M KOHLEHTPaLMH BMECTE CO CTAUMOHAPHBIMM JIOKalbHbIMKM 4ucnamu Hycceawta u llepsyna. B
TeyeHHe HAaYaNbHOIO NMEPHUOIA BPEMEHH TEMTOOOMEH OCYLIECTBAACTCA TONBLKO TEMJONPOBOAHOCTHIO,
a MaccoobMeH — ToaAbKO auddy3uei. 3aTeM MaccoBble CHbl BbI3bIBAIOT ABHXKEHUE B XKHIKOCTH,
M KOHBEKTHUBHbIH TEINO- M MaccooOMeH CTAHOBHUTCS 3HAYMTENbHbIM. Bee npodunu HecTauMOHAPHO#R
CKOPOCTH, TEMIIEPATYPh! M KOHUEHTPALKK AOCTHIAIOT MAKCUMATTbHBIX BEIMYHH, @ TOTOM HECKOJIbKO
CHMIKAIOTCA A0 COOTBETCTBYIOWIMX CTALIMOHAPHBIX 13HaueHWd. Beneacrsne atoro HabnopaeTcs
MUHUMYM 1715 3HaveHnit uncen Hyccensta u llepsyna.

s cnyyas MHTEHCH(PMKALHMH TeYeHus MAcCOOOMEHOM PE3y/bTaTbl MOKa3biBAKOT, YTO YHCIA

Hyccensta u llepByna Bbille, €M OpH YMCTON TEMIOBOH KOHBEKLHH.



