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TRANSIENT FREE CONVECTION WITH MASS TRANSFER 
ON AN ISOTHERMAL VERTICAL FLAT PLATE 

G. D. CALLAHAN* and W. J. MARNER~ 
Department of Mechanical Engineering, South Dakota School of Mines and Technology, 

Rapid City, SD 57701, U.S.A. 

Abstract-Transient, laminar free convection along a vertical, isothermal flat plate arising from buoyancy 
forces created by both temperature and concentration gradients is investigated. All fluid properties, 
except for the temperature and concentration dependent body forces, are assumed to be constants in 
the analysis. Non-dimensionalization of the governing boundary layer equations results in the following 
parameters: (1) N, the buoyancy ratio parameter, (2) Pr, the Prandtl number, and (3) SC, the Schmidt 
number. The coupled nonlinear partial differential equations are solved numerically using an explicit 
finite difference procedure. Results are obtained for Pr = 1 and a realistic range of SC and positive N. 
Representative transient and steady state velocity, temperature. and concentration profiles are presented, 
along with transient mean Nusselt and Sherwood numbers. For short times, heat transfer is by con- 
duction only and mass transfer is by diffusion only. Following this initial period, the body forces 
generate motion in the fluid and both convective heat and mass transfer become important. The transient 
velocity, temperature, and concentration profiles all reach maximum values before decreasing slightly to 
their respective steady state values. Owing to this overshoot phenomenon in the temperature and 
concentration profiles, a temporal minimum is observed in both the Nusselt and Sherwood numbers. 
For mass transfer aiding the flow, the results show that the Nusselt and Sherwood numbers are higher 

than those for pure thermal convection. 

NOMENCLATURE T, 

concentration; 4 

dimensionless con~ntration, u, 

(c-ccc)/(cw-%); 
constant pressure specific heat; 
diffusion coefficient; 
acceleration due to gravity; 

0, 

thermal Grashof number, pgL3(Tw- T,)/v’; 
K 

mass Grashof number, ~*g~3(c~-c~)/~~z; 
local heat-transfer coefficient, 

-k@Tl%%J(T,- 7-a); 4 

local mass-transfer coefficient, X, 

-~@cI~Y)&,--c,); 
1 L 

s 

Y, 
average heat-transfer coefficient, L hdx; Y, 

0 

1 L 
average mass-transfer coefficient, L 

s 
h,dx; 

0 

temperature; 
x-velocity component; 
dimens~onl~s x-velocity component, 

4 Gr,‘; 

y-velocity component; 
dimensionless y-velocity component, 
CL 
y Gr,“; 

spatial coordinate along the plate; 
dimensionless spatial coordinate along the 
plate, x/L; 

spatial coordinate normal to the plate; 
dimensionless spatial coordinate normal to 

the plate x Gr* 
‘L L 

thermal conductivity; Greek symbols 

length of the flat plate; 
buoyancy ratio parameter, 

~*tc~-c~)/~(~- 7”); 
local Nusselt number, k.x/!x; 
average Nusselt number, hL/k; 

Prandtl number, v/u; 
Schmidt number, v/D; 

local Sherwood number, k,x/D; 

average Sherwood number, DOLED; 

time; ___ .._ 
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thermal diffusivity, k/pc, ; 
volumetric coefficient of thermal expansion; 
volumetric coefficient of expansion with 
concentration; 
momentum boundary-layer thickness; 
concentration boundary-layer thickness; 
thermal boundary-layer thickness; 
dimensiontess time-step; 
dimensionless finite difference grid spacing 
in the X-direction; 
dmensionless finite difference grid spacing 
in the Y-direction; 
dimensionless temperature, 
(T-%)/K-T,); 



K viscosity; 
v, kinematic viscosity, F;/J: 

r, dimensionless time, EY C;rj ; 

P, density. 

Subscripts 

w, at the surface of the plate; 

.Y based on the distance from the leading edge 

of the plate; 

=, free stream conditions. 

INTRODUCTION 

EVER since the pioneering effort by Lorenz [l] in 1881, 
the analysis of free or natural convection has been of 
considerable interest to engineers and scientists. Most 

studies in this field have been concerned solely with 
thermal convection; however, as Gebhart and Pera [2] 
have pointed out, buoyancy effects resulting from con- 

centration gradients in multicomponent mixtures can 
be just as important in generating fluid motion as can 
temperature gradients. 

Representative fields of interest in which combined 
heat and mass transfer-under conditions of free 
convection--are important include: design of chemical 
processing equipment, formation and dispersion of fog. 
distributions of temperature and moisture over agri- 
cultural fields and groves of fruit trees, damage of 
crops due to freezing, and pollution of the environment. 

The problem of thermal convection, a situation in 
which the buoyancy forces are generated only by tem- 

perature gradients, in external flows has been the 
subject of a large number of investigations [335]. It is 

only quite recently, however, that the problem of free 
convection which takes into account the buoyancy 
effects due to mass diffusion has been studied. Of par- 

ticular interest here are those investigations dealing 
with external vertical flows. 

Gebhart and Pera [2] obtained similarity solutions 
for steady, laminar flows adjacent to vertical surfaces 
and in plumes. Solutions were obtained for air and 
water for various values of the Schmidt number and 

for multiple buoyancy effects which both aided and 
opposed the flow. They have included an excellent 
literature review in their paper which covers virtually 

all of the work done in this area. More recently, 
Bottemanne [6] has considered steady state simul- 
taneous heat and mass transfer along a vertical flat 
plate. Solutions to the boundary-layer equations were 
obtained only for Pr = 0.71 and SC = 0.63. 

The present investigation, involving the simultaneous 
effects of heat and mass transfer, is concerned with a 
numerical study of transient laminar free convection 
along an isothermal vertical plate which is subjected 
to a step-change in temperature and concentration. Of 
particular interest in this study is the effect of the 
buoyancy forces due to mass transfer on the transient 
velocity profiles, temperature profiles, Nusselt num- 
bers. and Sherwood numbers. 

ANALYSIS 

Consider transient. laminar flow with simultaneous 
heat and mass transfer along an isothermal vertical 
flat plate. The following assumptions are made: 

1. The fluid properties are assumed to be constants 
except for the body force terms in the momentum 
equation which are approximated by the 
Boussinesq relations. 

2. The concentration c of the diffusing species in the 
binary mixture is very small in comparison to the 
other chemical species which is present. 

3. Viscous dissipation in the energy equation is 
negligible. 

+. No chemical reactions are taking place in the flow. 

5. The temperature of the plate is subjected to a 
step change from T, to T, at time t = 0. Simul- 
taneously the surface concentration is changed 
from a value of cX to c,. 

6. The boundary-layer equations for mass, momen- 
tum, energy, and species are applicable. 

Based on these assumptions the continuity, momen- 
tum, energy and species equations become 

where the x-coordinate is directed upward along the 

plate and the j,-coordinate outward from the plate. The 
corresponding initial and boundary conditions are: 

l&X, J’, 0) = 0 
U(\., 0, t) = 0 
u(0, J. t) = 0 

U(.X, X, t) = 0 
l’(.Y, J‘. 0) = 0 
I.(x, 0, f) = 0 

T(x, ~1, 0) = T, 
T(r, 0, t) = T, (5) 

T(0, y, t) = T, 
T(s, x, t) = T, 

(.(x. ?‘, 0) = C’ ,, 
c(x, 0, t) = cw 
(((0, I’. t) = C’ , 

c(x, CL, I) = err. 

Equations (l))(5) may be expressed in dimensionless 
form as 
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U(X, Y, 0) = 0 
U(X, 0,7) = 0 
U(0, Y,7) = 0 

U(X, 32,7) = 0 

V(X, Y, 0) = 0 

V(X, 0,7) = 0 

0(X, Y, 0) = 0 

0(X, 0,7) = 1 
(10) 

O(0, Y, 7) = 0 

0(X, co, 7) = 0 

C(X, Y, 0) = 0 
C(X, 0, t) = 1 

C(0, Y, 7) = 0 

C(X, n3,7) = 0. 

The dimensionless quantities are defined in the 

Nomenclature. 
Equations (6)-( 10) show that the dependent variables 

U, V, 6 and C are functions of the dimensionless spatial 

coordinates X and Y, dimensionless time r, and the 
dimensionless parameters N, Pr and SC. In view of the 

definition ofthe two Grashof numbers, the parameter N 
may be defined as 

N = B*(cW-c,) 

SK-T,) . 
(11) 

It is noted that N is equal to zero when there is no 

mass diffusion body force and becomes infinite when 
there is no thermal diffusion. Equation (7) indicates 
that when N < 0, the mass diffusion buoyancy forces 
oppose those of thermal diffusion, when N = 0 the 
buoyancy effects are purely thermal, and when N > 0 
the mass diffusion buoyancy forces aid those of thermal 
diffusion. 

In the case of pure forced convection the Prandtl 
number, defined as v/u, relates the relative thicknesses 

of the momentum and thermal boundary layers, S and 
6,. Similarly, for pure forced convective mass transfer 
the Schmidt number, defined as v/D, relates the momen- 
tum and concentration boundary-layer thicknesses, 6 
and 6,. However, in the case of free convection in the 

presence of a mass diffusion contribution to the 
buoyancy force, the relationship among 6, 6, and 6a 
becomes extremely complex and depends on the ratio 
Pr/Sc as well as the buoyancy ratio parameter N. 

It is customary to express heat- and mass-transfer 
characteristics in terms of the flux rate divided by the 
temperature or concentration difference causing the 
transfer. This ratio defines the heat- and mass-transfer 
coefficients h and h,, respectively. For a uniform tem- 
perature or concentration difference over the plate, the 
flux is generally a variable. Therefore, local values, h and 
hD, as well as average values, I; and LD, are generally 
of interest. These values are then expressed in dimen- 
sionless form to obtain the local and average Nusselt 
and Sherwood numbers, respectively. In this analysis 
these groups, in terms of dimensionless variables, are: 

,XGr: 
n 

(13) 

(14) 

(15) 

Of primary interest in this study are the effects of 
the mass-transfer contribution to the buoyancy force. 
Thus, except for a comparison with some previously 
published results for Pr = 7.0, the Prandtl number was 
set equal to a fixed value of one throughout this 

investigation. Results were obtained for Schmidt num- 
bers of 0.2, 0.7, 1.0 and 7.0 and for values of the 
parameter N of 0.0, 1.0 and 2.0. 

Soh~tions for short times 
During the initial period following the step changes 

in the wall temperature and wall concentration, the 
body forces have not had sufficient time to generate 
any appreciable motion in the fluid. Hence, the velocity 

components U and V are both negligible for small r. 
During this initial transient regime, the heat- and mass- 
ttansfer processes are dominated by pure heat conduc- 
tionandpuremassdiffusion,respectively,and equations 

(8) and (9) reduce to 

A9 1 d20 . ._ 

a7 Pray2 
(16) 

L?C i a2c 
a7 sc ay2 (17) 

Thus, for short times it is noted that for a given Prandtl 
number, the temperature profile is a function only of 
time and the normal distance from the wall. Similarly, 
the concentration profile is a function only of time and 
the normal distance from the plate for a fixed Schmidt 

number. Setting Pr = 1, the solutions of equations (16) 
and (17), subject to the initial and boundary conditions 
given in equation (lo), are [7] 

0 erfc 

Y 1” 

= IO1 z 5 

C = erfc f 5% 
[ ( 

f 

7 11 

(18) 

(19) 

where erfc is the complimentary error function. Using 
the definitions of the Nusselt and Sherwood numbers, 
a straightforward manipulation of equations (18) and 
(19) leads to the following analytical expressions for 
the initial transient period 

NuJGri = (l/rrr)* (20) 

Sh,/Gr$ = (Sc/7ccr)*. (21) 

FINITE DIFFERENCE SOLUTION 

Solutions to the coupled continuity, momentum, 
energy and species equations-equations (6)-(9)-sub- 
ject to the initial and boundary conditions-equation 
(lo)-were obtained using a numerical procedure. 
Starting from the specified initial conditions at time 
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T = 0, the velocity, temperature and concentration A more detailed analysis of the numerical procedure 

fields were obtained at time 7+A7 by using explicit along with a complete listing of the FORTRAN com- 
finite difference approximations to the governing equa- puter program, which uas v,rittcn for a CDC 3400 
tions and boundary conditions. digital computer. may be found in [Y]. 

Successive application of these finite difference ex- 

pressions then yielded the transient velocity, tempera- 
ture and concentration profiles and eventually steady- 
state conditions were approachedd provided that stab- 
ility requirements were satisfied. Following the method 

prescribed by Carnahan et al. [8] it can be shown, 
for Pr = 1, that the stability criterion in this case must 

satisfy the inequality 

RESULTS 

Limiting chds 

In order to assess the accuracy of the numerical 

procedure, several solutions which are limiting cases of 
the present study were compared with previously 
published values. 

-I 

(22) 

at all discrete points in the flow field. Since both Cf 
and V vary throughout the flow, it is apparent that 
the critical time-step consistent with equation (22). 

is actually a variable. 
In order to obtain adequate convergence, it was 

found necessary to take very small values of AY near 
the surface and very small values of AX near the leading 

edge of the plate. Thus, in order to keep the computing 
time requirements within reasonable limits, variable 
mesh sizes were employed in both the X- and Y- 
directions. All results presented in the following section 

were obtained using the following mesh sizes : 

AX = 0.02(0 < X < 0. IO) 
AX = 0.06(0,10 < X d 0.40) 
AX = O.lO(O.40 < X < 1.00) 
A Y = O.lO(O < Y < 2.00) 
AY = O.SO(2.00 < Y < 12.0). 

In order to obtain a numerical solution it was necessary 
to limit the problem to a finite, rather than an infinite, 
extent in the Y-direction. Thus, after some preliminary 
investigations. a maximum value of Y = 12.0 was 
chosen for computational purposes. In order to check 
convergence ofthe finitedifference solutions, the spatial 
mesh sizes were doubled--accompanied by an appro- 
priate change in A7 and results for the two solutions 
were compared. The maximum difference in any of the 
dependent variables was observed to be seven per cent 

which was considered to be an acceptable degree of 
convergence. 

Once the temperature and concentration profiles are 
known at any given time, the local and mean Nusselt 
and Sherwood numbers may be evaluated. The local 
heat and mass transfer coefficients were obtained using 
5-point approximations for the derivatives (80/a Y), 
and (Z/i? Y),. Integrals in equations (14) and (15) were 
evaluated using Simpson’s rule in order to obtain values - 
for NuL and si’l, 

Steady state conditions are approached asymp- 
totically; however, the rates of heat and mass transfer 
are fairly sensitive indicators of the approaching steady 
state conditions. In this investigation steady state con- 
ditions were assumed to exist when the change, per 
time-step, in the local Nusselt number or local 
Sherwood number at X = 1.0 was less than 0.04 per 
cent. 

For N = 0 the only contribution to the body force 

is due to thermal diffusion and the results are directly 
comparable with those of Ostrach [lo]. Good agree- 
ment was obtained with the steady-state local Nusselt 
number results of Ostrach for Pr = I. Near the leading 

edge of the plate (X d 0.1) the maximum difference 
was about 6.5 per cent, while at X = I.0 the difference 

was only 0.75 per cent. Furthermore, a comparison of 
mean Nusselt number results. which are of greater 
interest than the local values in this study, with those 
of Ostrach showed a difference of only 1.25 per cent. 
Finally, a comparison of the steady-state velocity and 
temperature profiles at X = 1.0. again for Pr = 1, with 
those of Ostrach showed excellent agreement (well 

within I per cent) near the plate, but with an increasing 
error as the free stream conditions C’=OandO=O 
were approached. 

Two transient free convection solutions, obtained in 

the absence of mass-transfer elfects. were compared 
with corresponding values in the literature. First, 
transient local Nusselt numbers for N = 0, X = 1.0 

and Pr = 1 were compared with results from the 
approximate correlation of Churchill and Usagi [ 111, 
Although the steady-state local Nusselt number at 

X = 1.0 predicted by these investigators is 0.395, which 
is 1.5 per cent lower than the Ostrach value of 0.401, 
reasonably good agreement was obtained over the time 
interval of interest, 0 < 7 < 4. Second, transient mean 
Nusselt numbers for N = 0 and Pr = I were compared 
with the results of Kleppe and Marner [12], and 
excellent agreement was noted over the entire time 
range, 0 < 5 < 4. 

As a final comparison, steady state local Nusselt and 

Sherwood numbers-~-including the combined buoy- 
ancy effects of thermal and mass diffusion ~~-were com- 
pared with the results of Gebhart and Pera [2] for 
N = 2.0 and Pr = SC = 7.0. The largest deviation was 
observed at X = 0.10 with a difference of 4.2 per cent 
while excellent agreement was found at the trailing edge 
of the plate with a difference of only 075. 

Based on these comparisons. it is felt that the present 

numerical procedure can predict both transient and 
steady-state results quite accurately throughout most 
of the flow field. The two exceptions are: (1) near the 
leading edge of the plate, where very large changes are 
taking place, and (2) near the outer edge of the 
boundary layers, where the boundary conditions- 
U = 0, I) = 0 and C = 0 are being approached asymp- 
totically. 
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Velocity, temperature and concentration profiles 
Figure 1 shows the typical development of the 

transient dimensionless X-component of the velocity U 
for Pr = 1, SC = O-7 and hJ = 2.0. The profiles pre- 
sented are those at the upper edge of the plate, i.e. at 
X = 1.0. The velocity increases steadily with time, until 
at z + 1% when a maximum value is reached, and then 
decreases slightly to a steady-state value at 7 + 4.0. 

that both the magnitude of the maximum velocity and 
the time at which it occurs are functions of these three 
parameters. 

The effect of the parameter N on the steady state 
velocity profile, again at X = 1.0, is shown in Fig. 2 
for Pr = 1 and SC = 1.0. Clearly, the contribution of 
mass diffusion to the buoyancy force increases the 
maximum velocity significantly. A comparison of F’igs. 

FIG. 1. Transient velocity profiles at X = 1.0 for Pr = 1.0, SC = 0.7, and N = 2.0. 

Y 

FIG. 2. Steady state velocity profiles at X = 1.0 as a function of N for Pr = SC = 1.0. 

The somewhat surprising phenomenon of a temporal 
maximum in the velocity profile has been observed and 
discussed by several investigators for the problem of 
transient free convection on a vertical flat plate in the 
absence of mass-transfer effects. Siegel [13], based on 
an approximate integral analysis, was apparently the 
first to predict such a behavior. Later analyses by 
Gebhart [14], Hellums and Churchill [ 151 and Kleppe 
and Marner [12] all confirmed the findings of Siegel. 
In contrast to these earlier studies, however, the present 
problem is considerably more complex in that N and 
SC, in addition to Pr, are now additional parameters. 
The maximum velocity apparently occurs when the 
buoyancy forces in the fluid are largest, and it is clear 

1 and 2 shows, for fixed values of Pr and N, that a 
decrease in the Schmidt number also increases the 
maximum velocity. This increase in G’ may be at- 
tributed to the fact that the rate of mass transfer in 
the fluid, which in turn influences the buoyancy force, 
increases as the Schmidt number decreases. 

Figure 3 depicts the development of the transient 
dimensionless temperature at X = 1.0 for Pr = 1. 
SC = O-7 and N = 2.0. The temperature distribution, 
much as the velocity profile in Fig. 1, increases to a 
maximum value at z + 1.2 and then decreases slightly 
to a steady state value at 7 + 4.0. This interesting over- 
shoot phenomenon was first predicted analytically by 
Siegel [13] and verified and discussed by [12,14,iSJ 



170 G. D. CALLAHAY and W. J. MARNFR 

e 

(Steady state) 

2 

FIG. 3. Transient temperature profiles FIG. 5. Transient concentration and 
at X = I.0 for Pr = 1.0, SC = 0.7 and temperature profiles at X = 1.0 for 

N = 2.0. Pr = 1.0, SC = 0.7 and N = 1.0. 

C 

FIG. 4. Transient concentration profiles FIG. 6. Transient concentration and 
at X = 1.0 for Pr = 1.0, SC = 0.7 and 7.0, temperature profiles at X = 1.0 for 

and N = 2.0. Pr = 1.0, SC = 7.0 and N = 1.0. 

for the problem of transient free convection without Figure 4 relates the transient concentration profiles 
mass transfer on a vertical flat plate. Experimental data at X = 1.0 for Pr = 1, SC = 0.7 and 7.0, and N = 2.0. 
obtained by Goldstein and Eckert [16] and Klei (as Since the rate of mass transfer in the fluid increases 
reported by Siegel [13]) for a vertical flat plate sub- with decreasing Schmidt number, the concentration 
jected to a step-change in heat flux also verified this boundary layer is considerably thinner for SC = 7.0 
phenomenon. Just as in the case of the velocity profile, than for SC = 0.7. For a Schmidt number of 0.7, C in- 
the parameters N, SC and Pr influence the extent of the creases steadily until a maximum is reached at T + 1.20, 
overshoot in the temperature and the time at which the and then decreases to a steady-state value at z + 4.0. 
maximum profile occurs. For SC = 7.0 the concentration profile reaches a maxi- 

Concentratm __ 

Temperature ----- 

;\ ‘1 \ I,:\\ ,/ (Steady state) 

Y 

Concentration __ 

Temperature ---- 

Y 
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mum at 7 + 2.20 and then is observed to decrease to also clearly apparent in Figs. 5 and 6 for N = 1.0. 

a steady-state value at z f 4.0. Thus, the overshoot Although the extent of the overshoot in both C and 8 

previously observed in the velocity and temperature is larger for SC = 0.7 than for 7.0, the difference in C 

profiles is also noted here in the concentration profile. is clearly noticeable, while for the temperature profiles 
Although the maximum concentration for SC = 0.7 the difference is very slight. 
occurs considerably sooner than for SC = 7.0, at In comparing Figs. 5 and 6, it should be noted that 
7 + 1.20 as compared to 7 c 2.20, the time at which a change in the Schmidt number changes the concen- 
the concentration profiles reach their respective steady- tration profile and also alters the corresponding tem- 
state values is about the same. It should also be noted, perature profile. This behavior reflects the coupling of 
for these values of the parameters, that the overshoot the species and energy equations to the momentum 
for SC = 0.7 is slightly more pronounced than for equation through the temperature and concentration 
SC = 7.0. dependent body forces. Thus, as the body force par- 

/ I, I I1 , I / I , 1 / I , , , , 

Mean Nusselt number - _ 

Mean Sherwood number ----- 
N=2 0 

t IO- 
-&d 

1 
N&IO- 

cl 
\ 

IC4 : 
A I 

@ _, 
\ 

_ \ 

p - 09 
/j 

I 

-L4 
u 
\ 

I$ - 
l__-_f -_--_ 

----_ --____ 
Pure heat conductton 

I I I I I I I I ,,/,,,,,//,, 
0 IO 20 30 40 

T 

FIG. 7. The effect of N on the transient mean Nusselt and Sherwood 
numbers for Pr = I.0 and SC = 0.2. 

I I I I I I I , 1 I 
Mean Nusselt number ___ - 

Mean Sherwood number ----- 

Pure moss diffusion 

FIG. 8. The effect of N on the transient mean Nusselt and Sherwood 
numbers for Pr = 1.0 and SC = 0.7. 

A comparison of transient temperature and concen- 
tration profiles for Pr = 1, N = l.Oand SC = 0.7 and 7.0 

is presented in Figs. 5 and 6. Note that the concen- 
tration boundary layer in Fig. 5 is thicker than the 
thermal boundary layer (Pr = 1, SC = 0.7), while in 
Fig. 6 the thermal boundary layer is considerably 
thicker than the concentration boundary layer (Pr = 1, 
SC = 7.0). Thus, the effect of a reduced rate of mass 
diffusion in the fluid as the Schmidt number increases 
is very apparent. It should also be noted that the 
overshoot in the temperature and concentration pro- 
files previously observed in Figs. 3 and 4 for N = 2.0 is 

ameter N increases, it would be expected that a corre- 
sponding influence would be observed in the velocity, 
temperature and concentration profiles. 

Nusselr and Sherwood numbers 

Transient mean Nusselt and Sherwood numbers are 
shown in Figs. 7-10 for SC = 02, 0.7, 1.0 and 7.0, 
respectively. In each case Pr = 1 and N = 0.0 and 2.0. 
At small times the parameter N has negligible influence - 
on both NuJGrt and Sh,/Grt due to the fact that heat 
is transferred by conduction only and mass is trans- 
ferred by diffusion only during this regime. Analytical 
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expressions for the Nusselt number and the Sherwood 
number during this initial regime are presented in 
equations (20) and (21). respectively, and are shown 
graphically in Figs. 7-- 10 for comparison. As the buoy- 
ancy forces due to mass transfer and thermal convec- 
tion increase, the velocity increases su~~iently for N 

to become a parameter. Owing to the fact that the 
temperature and concentration profiles reach a maxi- 
mum before steady-state conditions arc reached, a 

transient minimum is observed in both the Nusselt 
number and the Sherwood number. The difference 

parameter N. In Fig. 9 it should be pointed out that 
when Pr = SC = 1.0, the temperature and concen- 
tration profiles are identical and hence the curves for 
the Nusselt and Sherwood numbers coincide. 

As the Schmidt number increases from a value of 
0.2 to a value of 7.0, a definite trend is apparent. With 

the Prandtl number fixed at a value of one, an increase 
in the Schmidt number is observed to (I) increase the 
Sherwood number substantially, and (2) decrease the 

Nusselt number moderately. Furthermore, the effect of 
the parameter N on the Nusselt number is noted to 

\ 
N=?O 

\< ’ N=OO 

*;- ‘* 
~._ 

“-----____ 
“- .__ 

Pure heat conduction or 
pure mass diffusfon 

: i / I ! / / , / / , / , , / 
0 IO 20 33 47 

J 

FIN. 9. The effect of N on the transient mean Nusselt and Sherwood 
numbers for Pr = 14 and SC = 1.0. 

/ / I / - I / / I ! I / / i i / t / 

\ 
40- : Mean Nusselt number - 

I Mean Sherwood number -- - - - 
\ 
\ 

_ \ 

FK 10. The effect of N on the transient mean Nusselt and Sherwood 
numbers for Pr = 1.0 and SC = 7.0. 

between the temporal minimum and the steady-state 
value, however, is quite small and, in some cases, is 
nearly imperceptible on the figures. When N does 
become a parameter, it is noted that an increase in N 
results in higher Nusselt and Sherwood numbers. In 
other words, the effect of increasing the buoyancy force 
due to mass transfer is an increase in the rates of heat - 
and mass transfer. In Figs. 7-10 both Nu,/Gri and 
&J3$ show a slight dependence on the time required 
to reach steady state conditions, i.e. as SC increases 
the time increases. However, the time required to reach 
steady-state conditions is virtually insensitive to the 
become less pronounced with increasing Schmidt num- 

ber. As SC increases the difference between the Nusselt 
number at N = 2.0 and N = 0.0 becomes smaller. How- 
ever, just the opposite effect is observed in the case of 
the Sherwood number. The following explanation 
attempts to account for this behavior. In Fig. 4 it was 
observed that an increase in the Schmidt number tends 
to decrease the concentration boundary-iayer thick- 
ness. However, even though the conservation equations 
are coupled, the thermal boundary-layer thickness is 
not highly sensitive to increases in the Schmidt number 
for a fixed value of the Prandtl number. Thus, as the 
Schmidt number increases the concentration boundary- 
layer thickness becomes smaller than the thermal 



Free convection on an isothermal vertical flat plate 173 

boundary-layer thickness. Consequently, buoyancy 
effects due to mass transfer are diminished in the 

thermal boundary layer, and hence the influence of the 
parameter N on NuJGri diminishes with increasing 
Schmidt number. On the other hand, as the Schmidt 
number increases, the buoyancy effects due to thermal 
convection become less important in comparison to 
those due to mass transfer in the thinner concentration 
boundary layer. Hence, as the Schmidt number in- 
creases, the influence of N on Sh,/Grt also increases. 

CONCLUSIONS 

The problem of transient laminar free convection 
along a vertical, isothermal flat plate arising from 

buoyancy forces created by both temperature and con- 

centration gradients has been analyzed. Briefly, the 
most important results and conclusions may be sum- 
marized as follows : 

1. 

2. 

3. 

4. 

5. 

6. 

For constant properties, except in the temperature 
and concentration dependent body force terms, 
the parameters of the problem are: Pr, the Prandtl 
number; SC, the Schmidt number; and N, the 

buoyancy ratio parameter. 
For short times the heat transfer is by conduction 
only, the mass transfer is by diffusion only, and 

both phenomena may be predicted with closed 
form analytical solutions. 

Following the initial conductiondiffusion regime, 
motion in the fluid is generated by the two body 
forces. In order to obtain a solution to this prob- 
lem, the governing conservation equations, which 
are coupled, must be solved numerically. 
The transient velocity, temperature and concen- 

tration profiles all reach maximum values before 
decreasing slightly to their respective steady state 
values. 
Owing to the transient overshoot in the tempera- 
ture and concentration profiles, both the Nusselt 

and Sherwood numbers pass through a temporal 
minimum before reaching their steady statevalues. 

For mass diffusion aiding the flow (N > 0), both - 
NuL and 9-1,~ are higher than the values for pure 

thermal convection. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 
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CONVECTION LIBRE TRANSITOIRE AVEC TRANSFERT MASSIQUE 
SUR UNE PLAQUE PLANE VERTICALE ET ISOTHERME 

R&me-On Ctudie la convection libre laminaire transitoire resultant des forces de gravite creees par 
les gradients de temperature et de concentration sur une plaque plane verticale isotherme. Toutes les 
proprietes du fluide sont supposees constantes, excepte les forces de volume dependant de la temperature 
et de la concentration. Les equations fondamentales de la couche limite rendues adimensionnelles 
conduisent aux parametres suivants: (1) N, parametre des effets de gravite, (2) Pr, nombre de Prandtl, 
et (3) SC, nombre de Schmidt, Les equations aux derivees partielles non lineaires couplies sont resolues 
numtriquement a l’aide d’une procedure explicite de differences finies. Les resultats sont obtenus pour 
Pr = 1 et dans un domaine realiste de SC et N positif. On presente les profils de vitesses, temperatures et 
concentrations dans la periode transitoire et a l’etat permanent, ainsi que les nombres de Nusselt et de 
Sherwood locaux a I’etat permanent. Pour des temps courts, le transfert de chaleur se fait par conduction 
uniquement et le transfert de masse par diffusion uniquement. Apres cette periode initiale, les forces de 
volume engendrent le mouvement du fluide et les transferts de chaleur et de masse par convection 
deviennent tous deux importants. Les profils de vitesses, temperatures et concentrations atteignent tous 
une valeur maximale avant de dtcroitre legerement jusqu’a leurs valeurs respectives a I’etat stationnaire. 
Ce phenomene de depassement dans les profils de temperature et de concentration a pour consequence 
un minimum dans le temps des nombre de Nusselt et de Sherwood. Lorsque le transfert de masse s’ajoute 
a l’ecoulement, les risultats montrent que les nombres de Nusselt et de Sherwood sont superieurs a ceux 

obtenus en convection thermique pure. 
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INSTATIONAKE FREIE KONVEKTION MIT STOFFUBERGANG 
AN EINER ISOTHERMEN, SENKRECHTEN, EBENEN PLATTE 

Zusammenfassung-Die Untersuchunggilt der von Temperatur- und Konzentrationsgradienten erzeugten 
instationiren, laminaren, freien Konvektion an einer senkrechten, isothermen, ebenen Platte. In der 
Analyse sind alle Eigenschaften des Fluids mit Ausnahme der Temperatur und der Konzen~ration als 
konstant angenommen. Aus den charakteristischen Grenzschichtgleichungen ergaben sich folgende 
Parameter: (I) N. das Auftriebsverhiiltnis. (2) Pr. die Prandtl~Zahl und (3) Sc, die Schmidt&Zahl. 

Die gekoppelten, nicht-linearen, partiellen Diflerentialgleichungen werden numerisch gelBst mit einer 
Methode der finiten Elemente. Ergebnisse sind wiedergegeben fiir Pr = I und einen realistischen Bereich 
von SC und positivem IV. Zusammen mit lokalen Nusselt- und Sherwood&Zahlen fiir den stationiren 
Bereich werden instationare und stationare Geschwindigkeiten, Temperaturen und Konzentrationsprofile 
angegeben. Fiir kurze Zeiten erfolgt der WBrmeiibergang nur durch Leitung und der Massentransport 
nur durch Diffusion. AnschlieBend an diese Anlaufperiode erzeugen die Massenkrafte eine Bewegung 
im Fluid, und konvektiver Wiirme- und Stoffiibergang werden bedeutsam. Die instationiiren Geschwindig- 
keits-, Temperatur- und Konzentrationsprofilc erreichen alle einen Maximalwert. ehe sie auf ihre 

entsprechenden stationgren Werte allmChlich absinken. Aufgrund dieses iiberlaufphgnomens der 

Temperatur- und der Konzentrationsprofile erreichen sowohl die Nusselt- wie such die Sherwood -Zahl 
ein kurzzeitiges Minimum. Fiir den Fall, da8 der Stoffiibergang die Str6mung unterstiitzt, liefern die 

Ergebnisse hohere Nussclt und Sherwood-Zahlen als fiir den Fall rein thermischer Konvektion. 

HECTAUMOHAPHAR CBOEOJJHAJI KOHBEKUMIl nPM HAJlMqMM 
MACCOO6MEHA HA M30TEPMMYECKOti BEPTMKAJIbHOI? 

FLJIOCKOfi n_JIACTMHE 

hHoTaqnR - B pa6ore paccMaTpwsaercR HecTauMoHapHan naMMHaptian ceo6onean KoHBeKUMR 
BAOnb BepTMKanbHOfi M30TepMMYeCKOfi il;lOcKO~ rL”aCTMHbl 3a CYeT nOL,beMHblX CM,,, C03AaBaeMblX 

,-PanMeHTaM,, TeMIlepaTypbl M KOHUeHTpaUMM. 

npen,,O,laraeTCfl, VT0 BCe CBOticTBa IWflKOCTM. 38 MCKnK)‘EHMeM MaCCOBblX CM,,, SaB1ICIIU&,x OT 

TeMnepaTypbl M KOHUeHTPaUMM, llOCTORHHbI. npMBeLleHMe ypaBHeHMi? rlOrpaHMYHOr0 CnOIl K 6e3pa3- 

MepHoMy f3wy naeT cnenymmwe napaMeTpbl: (I) N, napaMeTp cooTHomeHM9 non*eMHblx cMn; 

(2) Pr, WCnO npaHflT,lS M (3) SC, 9MCnO MMHnTa. CclcTeMa HenMHefiHblX LW$$epeHUHanbHblX 

ypaBHeHM$, B YacTHblX npOl43BOnHblX pelUaeTcSl ‘INCneHHO C nOhlOLUbK) RBHOti KOHeYHO-pa3HOCTHOti 

CxeMb,. Pe3ynbTaTbl nOJyYcHbl ItnR PI I, pea;lbHoro nuana3oHa SC w nonomMTenbHoro N. 
npeflCTaBneHbl XapaKTepHble rlpO@inH HeCTallMOllapHOti M CTaUMOHapHOfi CKOPOCTM, TeMnepaTypbI 

H KOHUeHTPaUMM BMeCTe CO CTaUMOHaPHblMM JIOKanbHblMM ‘(MCnaMM HyCCenbTa H UepByna. B 
TeqeHMe tiaqanbHor0 nep”ona speMetit4 TennooGMeH 0cyt~ecT~n~eTc~ TonbKo Tennonpof3onHocTbt0, 

a MaCCOO6MeH - TO.lbKO JW$+y3Meii, 3aTeM MaccOBble CMnbl Bbl3blBaK)T nBM,KeHCle B XWL,KOCTM, 

CI KoHBeKTMBHblti TennO- M hlaccoo6MeH CTBHOBMTCR 3Ha’,MTenbHblM. Bee npO@,#nl4 HeCTaUMOHapHOti 

CKOPOCTH, TeMnepaTypbl !I KOHUeHTpaUMM nocTMrat0T MaKCMManbHblX BenMYMH, a nOTOM HeCKOnbKO 

cHMH(aEOTCR fl0 COOTBeTCTByWU,MX CTaUMOHapHblX 3HaYeHMR. BcnenCTBMe ‘ITOr Ha6ntonaeTcR 

MMHHMYM nnn 3HaveHMR YMcen HyCCenbTa M Ulepeyna. 
,&fl CnyYafl NHTeHCM(t)MKaUMM TeSeHMII MaCCOO6MeHOM pe3ynbTaTbl nOKa3blBaH3T, YTO YMCna 

HyccenbTa w UIepeyna Bblme, qeM npM YMCTOR Tennoeofi KoHaeKuwt4. 


